

KTH ROYAL INSTITUTE OF TECHNOLOGY

Evaluation of Hoffman and Xia plasticity models against bi-axial tension experiments of fiber network materials

M. Alzweighi¹, R. Mansour¹, J. Tryding² and A. Kulachenko¹

Introduction

The bio-based materials are of a complex nature

- anisotropy i.e., the material is a directional dependent
- · local variations in the properties

Using modeling approach can significantly help during the design phase

- · reduce the loop time of design and test
- enhance the end-user experience
- using the computational tool for packaging development
- introducing a virtual twins

Modelling of bio-based materials

Modeling approaches

- micromechanical simulation tool (more detailed but limited in usage due to the complexity)
- continuum modeling (simplified with broad usage)

Multiscale modeling is used to combine the advantages of both micro and continuum approaches

Alzweighi, M., Mansour, R., Lahti, J., Hirn, U., & Kulachenko, A. (2021). The influence of structural variations on the constitutive response and strain variations in thin fibrous materials. *Acta Materialia*, *203*, 116460.

Aim and scope

Numerous numbers of continuum models have been developed

There is a lack of comparative studies

Uncertainties regarding the selection of a suitable model step forward

Methodology

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 764713 4

Approach

Two continuum models are chosen for the benchmark study against biaxial tension experimental results

- Hoffman model
- Xia multi-yield surface

The background of choosing those models are

- Hoffman is of von Mises type
- Xia is of multi yield surface
- both model preset the ability to show anisotropy and asymmetric tension-compression
- these types cover to a large extent most of the continuum approach in bio-based materials

Material model

Hoffman model

$$f(\mathbf{\sigma}, \varepsilon_{\text{eqv}}^{p}) = \frac{1}{2}\mathbf{\sigma}^{T}\mathbf{P}\mathbf{\sigma} + \mathbf{q}^{T}\mathbf{\sigma} - H(\varepsilon_{\text{eqv}}^{p})$$

 σ stress tensor

P matrix describes the anisotropy

 ${\bf q}$ differences in yield stresses in tension and compression

H hardening function

Xia model

$$f(\mathbf{\sigma}, K_{\gamma}) = \sum_{\gamma=1}^{6} \chi_{\gamma} \left(\frac{\mathbf{\sigma}^{T} \mathbf{N}_{\gamma}}{K_{\gamma}} \right)^{2k}$$
$$\chi_{\gamma} = \begin{cases} 1 & \mathbf{\sigma}^{T} \mathbf{N}_{\gamma} > 0\\ 0 & \text{otherwise} \end{cases}$$

 $\mathbf{N}_{_{\boldsymbol{\gamma}}}$ gradient of the sub-yield surfaces

_1

 K_{γ} hardening functionk shape parameter σ_2

6

 σ_1

Yield surfaces

Xia model

7

Stability of the models

Drucker's stability postulates

- Normality
- Convexity

convex with normality

concave yield surface with normality

Xia model

$$\mathbf{H}_{\text{Xia}} = \frac{\partial^2 f}{\partial \sigma^2} = \sum_{\gamma=1}^6 \chi_{\gamma} 2k(2k-1) \left(\frac{\sigma^T \mathbf{N}_{\gamma}}{K_{\gamma}}\right)^{2k-2} \frac{\mathbf{N}_{\gamma} \mathbf{N}_{\gamma}^T}{K_{\gamma}^2} \ge 0$$

unconditionally convex

e vield surface with

Hoffman model

$$\mathbf{H}_{\text{Hof}} = \frac{\partial^2 f}{\partial \sigma^2} = \mathbf{P} = \begin{bmatrix} P_{11} & P_{12} & 0 \\ P_{22} & 0 \\ \text{Sym} & P_{33} \end{bmatrix}$$
$$\lambda_1 = P_{33} \ge 0$$
$$\lambda_2 = \frac{1}{2} \Big(P_{11} + P_{22} + \sqrt{(P_{11} - P_{22})^2 + 4P_{12}^2} \Big) \ge 0$$
$$\lambda_3 = \frac{1}{2} \Big(P_{11} + P_{22} - \sqrt{(P_{11} - P_{22})^2 + 4P_{12}^2} \Big) \ge 0$$

conditional convexity

Experimental setup: Geometries

Cruciform specimen with two tests setup

Experimental setup: Testing machine

The optical-extensometer device attached to the bi-axial test machine

The four tracking squares

Experimental setup: Time-displacment

MD-CD Test

11

Material characterization

Uni-axial response of the material in MD, 45° and CD and the average response in each direction for characterization

Finite element simulation

Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 764713

5

5

Analysis and Results

Comparison results

Comparison of experiment to the simulation results for the Hill, Hoffman, and Xia models

The Xia shape parameters k = 1, 2, and 3 are used in the simulation

Comparison discussion

The simulated reaction forces using the Hill, Hoffman, and Xia model for $k \le 2$ are in agreement with the experiment

Xia model with $k \ge 3$ consistently shows a stiffer response compared to the Hill and Hoffman

Xia model with shape parameter k = 2, the bi-axial response is similar to that from the Hoffman model

For the Xia and Hoffman, this stiffer response is due to k, and $(\sigma^T q)$, respectively

Comparison discussion

Xia with k = 1, followed by Hill, present the closest responses to the experiments

For symmetric tension-compression response, the Hill model is able to capture adequately the biaxial stresses

Featuring different tension-compression for Hoffman requires recalibration of the model

For Xia, presenting a different tension-compression doesn't require recalibration (uncoupling of sub-surfaces)

Summary of the comparison

	Hill	Hoffman	Xia
Convexity	Conditionally convex depending on the orthotropic plastic matrix	Conditionally convex depending on the orthotropic plastic matrix	Unconditionally convex
Number of plastic parameters	6	8	12

User material subroutine and the fitting tool

The user material source codes for Hoffman and Xia will be shared as well as the Matlab calibration tool of Xia

1 2 3 4 5	% Xia fitting tool for 2-D plane case by Mossab Alzweighi % KTH Royal Institute of Technology % mossab@kth.se %%	<pre>subroutine usermatpsHot(matId, elemId, kDomIntPt, kLayer, kSectPt, ldstep, isubst, keycut, nDirect, nShear, ncomp, nStatev, nProp, Time, dTime, Temp, dTemp, stress, ustatev, dsdePl, sedEl, sedPl, epseq,</pre>	
6 -	clc;	Strain, dStrain, epsPl, prop, coords,	
· -	close all:	var0, defGrad_t, defGrad,	
9 –	<pre>set(groot.'defaulttextinterpreter'.'latex'):</pre>	var1. var2. var3. var4. var5.	
10 -	<pre>set(groot, 'defaultAxesTickLabelInterpreter', 'latex');</pre>	var6, var7)	
11 -	<pre>set(groot, 'defaultLegendInterpreter', 'latex');</pre>		
12	%% load experimental data	***************************************	
13 - 14 - 15 -	<pre>ExpFile = importdata('FinalExp.txt'); % input data with the format: strain[% ExpFile(:,1) = ExpFile(:,1)/100; % convert strain from [%] to [-] Rp = 0.02/100; % define plastic yield strain value</pre>	<pre>[%], Hoffman elastic-plastic model with anisotropic proprties and c assymteric tension-compression response c for 2-D plane stress case. c Mossab Alzweighi c KTH Royal Institute of Technology c mossab@kth.se</pre>	
16			

Thank you for your attention!

Mossab@kth.se

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 764713